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Seismic Recordings in the Northeastern United States
of the Shagan River Nuclear Test of 14 September 1988

1. INTRODUCTION

In early September 1988 the Solid Earth Geophysics Branch of the Geophysics Laboratory
Earth Sciences Division was preparing to support a major crustal refraction survey transecting
New England and New York, and continuing into Ontario, Canada. This experiment, the
Ontario-New York-New England Seismic Refraction Experiment (nicknamed NY-NEX: Battis,
1990; Mangino and Cipar, 1990) was conducted jointly by the Geophysics Laboratory (GL), the
US Geological Survey (USGS]), and the Geological Survey of Canada {GSC). The generalized
geology of the region and the shot lines of this experiment are shown in Figure 1. During this
experiment GL conducted two separate field operations. The first of these was a 25-station
network of three-component seismic recorders whose locations were varied throughout the
experiment. The second operation was a 16-element, small-aperture seismic array located in
the Connecticut River Valley at North Haverhill, New Hampshire.

(Received for Publication 7 January 1991)
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On 14 September, the USSR conducted an announced nuclear test as part of the US-USSR
Joint Verification Experiment (JVE) called for in the protocols of the Threshold Test Ban
Treaty of 1974. The test, code named SHAGAN, was detonated at the Shagan River test area in
eastern Kazakh SSR (Figure 2). Table 1 gives the USGS origin time, location, and magnitudes
along with coordinates and distances to scations used in this study. This event provided an
opportunity to test and calibrate the GL field equipment prior to the crustal refraction
experiment. For this nuclear test, the small-aperture array in New Hampshire and a five-
station network located in the Adirondack Mountains of New York State were operated by GL.
This report describes the data taken during this shot and some preliminary analysis of the
data.

2. THE NEW HAMPSHIRE SMALL-APERTURE ARRAY

The Soviet nuclear test on 14 September 1988 was recorded by a small-aperture seismic
array that had been installed by GL at North Haverhill, New Hampshire to support the
Ontario-New York-New England Seismic Refraction Experiment. The primary purpose of the
array was to examine high frequency (> 5 Hz) selsmic propagation at regional distances during
the Ontario-New York-New England Seismic Refraction Experiment. The configuration of the
array was, therefore. not optimal for observing a teleseismic event such as the SHAGAN
nuclear test. However, as a result of the relative quiet of the site and the level of noise
suppression achieved through array processing, the North Haverhill array provided relatively
high quality seismic recordings of this event. Due to the limited recording time available on
the configured system the data from this event consisted primarily of the body wave phases.

2.1 Geological and Geophysical Setting

The GL seismic array was located on the property of a smail municipal atrport in the town
of North Haverhill, New Hampshire (Figure 3). The latitude and longitude of the arrry,
referenced to the vertex of the arms of the array, was measured to be 44.079°N and 72.009°W.
An elevation of 177 meters above mean sea level was determined from the USGS 15" topo-
graphic sheets for this area. Geophysically, the site is of interest as it lies near the contact
line between the ancient North American and European or African plates. Arrivals at the
array from the east are basically traveling in the alien crust while those from the west travel
through the original North American plate, as defined by the limits of Grenville formations.
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Figure 3. Location of the GL North Haverhill, New Hampshire Small-Aperture Array

Also Showing Selected Stations of the New England Seismic Network. Stations MDV
and WYN are shown for orlentation of this plot with Figure 11.




This site 13 within the Connecticut River Valley and just west of the White Mountain
plutons {Figures 1 and 4). The array lies between the Foster Hill sole fault on the east and the
Ammonoosuc fault on the west, both of which trend north-northeast in the area of the array
(Moench. 1989). The Ammonoosuc fault is taken to be the western boundary of the Bronson
Hill anticlinorium, an Island arc complex associated with the overthrusting of the oceanic
plates during the closing of the proto-Atlantic ocean. This event occurred about 440 million
years ago, during the middle Ordovician. The site is at the northern end of the Piermont
Allochthon which appears to have been transported to its present location during the Acadian
orogeny and before the emplacement of the Devonian New Hampshire Plutonic Series. The
array was located just outside of the mapped southern boundary of the French Pond pluton
from this series. Underlaying the site and extending well to the south is a turbidite sequence
of interbedded metasandstones and phyllites, part of the allochthon. Both the allochthon and
the plutonic intrusions are typical of continental convergence zones {Dewey, 1977) as has been
hypothiesized as causes of the Acadian orogeny.

In a comprehensive 3-D study of the crust under the Northeastern US, Taylor and Toksoz
(1979) found distinct evidence for crustal thickening between central Vermont and central
Maine. That study indicated the thickest crust runs along the Connecticut River Valley from
the Massachusetts border to somewhat north of the array site. They estimated a crustal
thickness of approximately 41 km along this belt. It was hypothesized that this region took
the main brunt of the continental collision during the Acadian orogeny. Further, an
anomalous, low-velocity upper mantle, extending at least to 200 km, was also indicated for
central New Hampshire from thelr study. This deep seated feature is correlated with the
Bronson Hill Anticlinorium (Figure 1 and Figure 4], an island arc complex associated with
subduction of oceanic lithosphere during the Early Devonian.

Luetgert and Hughes (1989), based on data taken during the Ontario-New York-New England
Seismic Experiment data, also found a thickened crust in the vicinity of the GL array. Beneath
the array the crustal thickness was estimated to be approximately 40 km, close to the
maximum value along the examined transect. In general, they found the crust deepened from
about 34 km in central Maine to about 41 km approximately 60 km to the west of the array.
They also found pronounced lower P-wave velocities in the upper crust, at depths less than 20
km, in the vicinity of the array as compared to the structure observed further to the west under
western Vermont and eastern New York.
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Figure 4. Simplified Geologic Map of the Region Near the North Haverhill, New
Hampshire Small-Aperture Array. (After Moench, 1989).




2.2 Array Configuration

The configuration of the North Haverhill array on 14 September, 1988 is shown In Figure
5. This layout was dictated both by the main purpose of the array, namely the study of high
frequency propagation during the Ontario-New York-New England Setsmic Experiment, and by
the available open land at the site. On 14 September the array consisted of 14 vertical Electro-
Tech EV-17 one second vertical seismometers and 2 EV-17-H horizontal units. The vertical
instruments were laid out along two arms having azimuths of 351° 59' and 290° 34'. The
northerly arm was 448.0 meters long while the westerly arm was 341.4 meters long. In
addition. one vertical instrument was located midway between the arms 69.4 meters from the
veriex of the array. The two horizontal seismomelers were collocated at the vertex of the array
and oriented to true North and West, respectively, The position of each sensor, relative {o the
vertex of the array is given in Table 2 along with the associated system parameters.

Data from the array were digitally recorded by the GL developed Geophysical Data
Acquisition System (GDAS), an upgraded version of the data acquisition system described by
von Glahn (1980) and Blaney (1990). The GDAS sampled the array at the rate of 100 samples
per second per channel. A 6-pole Butterworth anti-aliasing filter with a corner frequency of
34.3 Hz and a nominal system gain of 2022 were applied to the analog signals before
digitization. System responses were obtained (n-situ by application of a known current to the
calibration coils of the seismometers. Estimates of the full system response, due to the
instrument, electronics, and signal conditioning, were obtained by minimizing the least
squared error between the observed calibration pulses and simulated pulses derived from
theoretical models of the systein. A typical system response function, in this case for the
vertical selsmometer at the vertex of the array, channel 7, is shown in Figure 6.

Time references for tagging sampled data were obtained from an internal clock in the
GDAS. Timing errors for this clock were determined by comparing clock pulses with the
output signal of a Geostationary Operational Environmental Satellite (GOES) receiver. At the
time of the JVE shot, the GDAS Internal clock was found to be 32.25 msecs late relative to the

GOES time signal. In addition. it was later found that the GDAS sampling software introduced
a 205 msec advance on the time tag. In other words, data tagged as being taken at t sec were

actually taken at t  + 0.205 sec. Thus, times taken from the GDAS files for SHAGAN must be
increased by a total of 237 msec for full correction to Universal Time.
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2.3 The New Hampshire Recordings

At 04:10 UT on 14 Septembe: 19€8, the North Haverhill array was turned on and data were
recorded for approximately the next 30 minutes, the maximum capacity of the recording
system at 100 samples per second per channel. During the observation window wind
conditions at the array were gusty with moderate wind specds. These winds produced
substantially higher rms noise levels at the extremittes of the array than at the vertex due to
the iInduced motions in wind breaks bordering the site. This problem was particularly
pronounced at sensor 1, the northern most selsmometer in the array.

Figure 7 shows the ground velocity traces frorm the three instruments at the vertex of the
array for a 100 second window around the P-wav: airival time. The plot shows channel 7, a
vertical sensor, channe¢® 8, north-south, and channel 9, west-east. In addition, the vertical
stark for the array, excluding channels 8 and 9, is displayed as the bottom trace. The vertical
line at 26.7 seconds into the record indicates the picked first arrival time at the array Figure
8 shows equivalent traces for a 100 second window around the expected S-wave arrival. In this
figure the vertical line is placed at the predicted S-wave arrival time based on the Jeffreys-
Bullen Tables (Jeffreys and Bullen, 1967). Time labels for these figures have been corrected by
the required 237 msec. It should further be noted that the time tics are relative to the
beginning of the displayed data file as given in the lower left hand comer of the figure. The
true gruund motions were evaluated over a pass band of 0.3 to 30.0 Hz, As should be expected
for an explosive source, the S-wave window does not show any pronounced arrivals. There are,
however, indications of several weak arilvals in the window. The maximum amplitudes in
this window are at less than one-fifth of the those during the F-arrival from this event.

Figure 9 a, b, and shows the power spectra for channels 7, 8, and 9, respectively, estimated
from a 5.12 second w ndow starting just before the P-wave first arrival. The dashed lines in
these plots are noise spectra taken just prior to the first arrival. The spectrum for channel 7, a
vertical sensor, is typical of all vertical channels below approximately 5.0 Hz. It is apparent
from these figures that, as should be expected for a teleseismic event, the power in the P-wave
is primarily in a band below 4.0 Hz. At frequencies higher than 5.0 Hz there appears to be
little signal power and the spectrum is dominated by locally generated noise. This could also
be seen in a rapid declire in signal coherence across the array at frequencies greater than 4.0
Hz. The shoulder in these spectra at 0.4 Hz is the result of a high-pass filter applied during
instrument response correction.

FK-spectra calculated for the first P-arrival and for several frequencies below 4 Hz all
indicate a near vertical arrival as shown In Figure 10. The spectra are essentially duplicates
of the theoretical array beamform. They do, however, show substantial variation in apparent
azimuth estimates. The inability of the array to discrindnate apparent azimuth was not
unexpected due to the small-aperture of the array and relatively steep angle of incidence of the
signal.
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Figure 7. True Ground Velocity Time Traces for a Window Around the P-Wave Arrival

for Channels 7, 8 and 9, Vertical, North-South and West-East Sensors

and with the Vertical Stack of the Vertical Elements of the Array
Trace. The line at 26.7 sec indicates the picked first arrival ttme.
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Figure 8. True Ground Velocity Time Traces for a Window Around the S-Wave Arrival
for Chunnels 7, 8 and 9, Vertical, North-South and West-East Sensors, Respectively,
and a Vertical Stack of the Array Vertical Sensor Elements at the Bottom. The vertical
line is the predicted S-wave arrival time based on the Jeffreys-Bullen tables (1967).
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Figure 9. Power Spectra Estimated from (a) Channel 7, (b} Channel 8, and {¢) Channel 9
for a Window of 5.12 Sec Starting with the First Arrival of the P-Wave. The dashed
lines are noise spectra based on similar windows taken just prior to the first arrival time.
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Figure 10. FK-Spectrum from the first 5.12 Seconds of the P-Wave at a Frequency

of 0.85 Hz, Near the Peak Frequency of the SHAGAN Event at the North Haverhill
Array.
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3. THE ADIRONDACK ARRAY

A five station array was set up in the Long Lake, New York, area of the Adirondack
Mountains to record the Shagan River explosion. These stations comprised part of deployment
1 of the Ontario-New York-New England Seismic Refraction Experiment (Mangino and Cipar,
1990). Deployment 1 extended from Long Lake to Lorraine, New York, with the purpose of
studying the crustal structure of the central Adirondack Mountains. Five profile stations in
the Long Lake area were installed in time to record the SHAGAN shot (Table 1). Time
limitations and difficalt access for most of the profile precluded installing additional stations.

3.1 Geological and Geophysical Setting

The Adirondack Mountains are an extension of the Proterozoic (1.2-1.0 by) Grenville
Province of the Canadian Shield. The mountains form a nearly circular dome, roughly 200km
in diameter. They are surrounded by nearly undeformed Paleozoic sedimentary rocks on the
north, west, and south; to the east are the highly deformed and metamorphosed Paleozoic
Appalachian Mountains. The Adirondack array stations were located in the Highlands region,
approximately 46 km southwest of Mount Marcy, the highest mountain peak of the
Adirondacks. In the immediate vicinity of Long Lake, the rocks are mangerite-syenite-quartz
syenite and hornblende gneiss covered by a thin veneer of soil (Whitney et al, 1989). Mount
Marcy and the other High Peaks are underlain by the Marcy metanorthosite. The rocks of the
Highlands were metamorphosed to granulite facies during Proterozoic times, indicating burial
at deep levels within the crust. Geobarometry and geothermometry indicate maximum
temperatures and pressures of 710-760 degrees C and 7.4-7.6 kilobars in the area of the array.
{many studies summarized in Whitney et al., 1989). The metamorphic pressure and
temperature of the Adirondack rccks are appropriate for depths of 25-30 km in the continental
crust. Since the depth to the Moho is presently about 35 km (Katz, 1955). this implies that the
crust was thickened to 60-65 km, double its present value, during the regional metamorphic
event. A modern analogue to the Proterozoic Adirondacks are the Himalaya Mountains (Dewey
and Burke, 1973).

While the rocks of the Adirondacks are anclent, the present elevatlons may be youthful.
Isachsen (1975) reports 3.7 mm/year uplift in the center of the Adirondack dome, although
systematic errors in leveling make this estimate somewhat suspect (Isachsen, 1985). Whitney et
al. (1989, p. 26-27), however, cite several other lines of evidence to support recent doming in
the Adirondacks and speculate that the uplift is caused by crustal expansion over a hotspot.

Taylor and Toksoz {1982) suggest, based on early work, that the crust under the
Adirondacks consists of a thin 6.1 kim/sec layer overlying 6.4 1o 6.6 km/sec material that
extends to the crust-mantle boundary (Moho) at 35 kin depth. Mangino and Cipar (1989)
measure apparent velocities for Pg to be 6.5 km/sec, Pn to be 8.05 km/sec, and no coherent
reflection from the crust-mantle boundary. The latter observation suggests a transitional
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Moho. A transitional Moho is also indicated by analysis of teleseismic receiver functions by
Owens (1987) who infers that the crust is up to 50 ki thick beneath station RSNY in the
northern Adirondacks. Owens (1987) demonstrates considerable complexity in the crustal
S-wave structure including strong lateral variations in velocity. Seismic reflection data
obtained by COCORP (Brown et al., 1983) reveal that the upper 12 km of the crust s
acoustically transparent suggesting a considerable thickness of homogeneous material. Just
east of the GL station array, a series of strong, discontinuous, sub-parallel reflectors are
observed in the 10 to 20 km depth range. Farther east, below the Marcy Massif, the COCORP
data image a wedge of extremely strong reflectors dipping westward (the Tawahus complex).
The Tawahus structure also produces strong reflections on the NY-NEX refraction data

(J. Luetgert, pers. comm,}, The COCORP sections indicate scattered reflections from the Moho
suggesting a crustal thickness of 33 to 35 km.

3.2 Array Configuration

Five sites (station numbers 1125, 1126, 1129, 1130, and 1131) were occupied during the
SHAGAN explosion (Figure 11; Table 1). At each station, Terra Technology DCS-302 digital
cassette seismographs were used to record signals from a three-component set of Geospace
HS-10-1B 1-Hz seismometers. At stations 1125 and 1130, a second DCS-302 recorded signals
from a three-component set of Kinemetrics SV/SH-1 5-second selsmometers. The HS-10-1B
and SV/SH-1 sensors were installed on aluminum baseplates which have machined
indentations for the seismometer feet, allowing precise alignment and orlentation. Horizontal
seismometers were aligned to within 2 degrees of magnetic north.

Each seismograph system (sensor plus recorder) was calibrated by driving the seismometer
calibration coil with a known current and recording the main coil output on cassette tape. The
calibration pulse was fit in a least-squares sense to the equation for a damped pendulum
(Mitche!l and Landisman, 1969). Seismometer constants are given in Table 3.

Station timir.g was done by initially setting the internal clock of each recorder to
universal time (UTC) via a GOES satellite clock. After the experiment, the internal clock drift
was measured by re-comparing the clock to GOES and interpolating to the event time, For
several stations, WWVB radio receivers provided continuous time correction data. Whenever
possible, the WWVB corrections are used. Table 3 gives the measured time correction with the
notation "GOES" or "WWVB" indicating how the correction was measured.

The recorders employ a 12-bit data word and automatic gain ranging to provide 126 dB of
dynamic range. For the SHAGAN experiment, gain ranging was not needed and the nominal
digitizing factor is 2.4414 microvolts/count. A five-pole Butterworth anti-allasing filter with a
corner frequency of 30 Hz is applied to the signal which is sampled at 100 samgples per second.
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44°~

Figure 11. Seismic Stations in the Adirondack Mountains, New York. The GL Adiron-
dack, Array are the numbered stations at approximately 44°N, 74.5-75°W. Other
stations are maintained by Lamont-Doherty Geological Observatory. The soltd lne
indicates the limit of Pre-Cambrian outcrops of the Adirondack dome. The stippled
area is the outcrop of Marcy anorthosite.
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3.3 Adirondack Recordings

Figures 12 a,b,c show the P-wave portion of the short-period seismograms in record section
format. These tigures show pendulum velocity in cm/sec uncorrected for instrument response
which means that the polarities are opposite the true ground motion. For an explosion P-wave
arriving with a 17 degree station-to-source azimuth, the expected first motion is south, west,
and up, opposite to the polarities shown in Figure 12 a,b.,c. The short-period horizontal records
are low-pass fllitered below 16 Hz to remove ambient noise probably due to wind moving trees.
The short-period vertical records are unfiltered. The short-period vertical channel at station
1130 and the east-west channel at station 1125 did not work. The 5-second selsmometer
records are shown in Figures 13 a,b. It is clear that the north-south channel at station 1130 is
mis-identified {top trace labelled MPN on Figure 13b) and is, in fact, the vertical component. It
is probable that the bottom trace (labelled MPZ) is the north-south component since it has
larger amplitude as predicted by the source-station geometry. Note that the trace labelled MPE
has reversed polarity. All mid-period seismograms were band-pass filtered between 0.4 and
16 Hz to remove microseismic and cultural noise, No S-wave signals stand out above the noise
on either the short- or mid-period systems.
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4. P-WAVE ARRIVAL TIMES

4.1 New Hampshire Array

The Shagan River test site is located at a distance of 83.1° from the North Haverhill array
on an azimuth of 18.5° as shown in Figure 5. Based on the Jeffreys-Bullen and Herrin
Seismological Tables the expected P-wave transit and first arrival times for the North
Haverhill array are given in Table 4 (Jeffreys and Bullen, 1967; and F-rrin, 1968). This table
also lists the observed transit and arrival times at the North Haverhill site. The predicted
times are all based on the USGS origin time of 03:59:57.4 UT and the observed arrival tine has
been fully corrected to UT. It is apparent that the P-arrival at North Haverhill is significantly
delayed relative to these standard travel-time tables,

P-wave relative residuals, computed from the mean residual from arrivals at 16 stations of
the New England Seismic Network operated by Weston Observatory of Boston College, show
that the North Haverhill array has the largest relative P-residual in the New England region,
0.61 sec (Ebel, 1990; Ebel, et al., 1989). Although Ebel, et al. (1989) did not find any particular
pattern in the distribution of relative residuals over the ensemble of New England network
stations, it is observed that network stations located nearest to the array, specifically Berlin
(BNH) and Hanover (HNH) in New Hampshire, and Baltimore (BVT) in Vermont also show
significant P-delays. At these sites, however, the delays are of lesser magnitude being of 0.22,
0.41, and 0.44 sec, respectively. The locations of these stations with respect to the New
Hampshire array are shown in Figure 3.

These results are in accord with the crustal thickening and low-velocity mantle along this
segment of the Connecticut River Valley previously proposed by Taylor and Tokso6z (1979) on
the basis of extensive teleseismic travel time residual studies in this region and by Luetgert
and Hughes (1989) based on refraction work from the Ontario- New York-New England
Refraction Experiment.

4.2 Adirondack Array

The Shagan River test site is located at an epicentral distance between 82 and 84 degrees
from the Adirondack array at a station-to-source azimuth of 16 to 19 degrees. Observed arrival
times and transit times based on the USGS PDE origin time are listed in Table 4. Readings
from permanent stations operated by Lamont-Doherty Geological Observatory (LDGO} are also
included (Russell Such, pers. comm.). Transit times and residuals have been calculated for the
Jeffreys-Bullen Tables and the He rin Tables (Jeffreys and Bullen, 1967; Herrin, 1968). The
observed travel times are in good agreement with the Jeffrey-Bullen Tab;=s, but about 2 sec late
compared to Herrin. Dziewonski and Anderson (1981) point out that the J-B Tables are about 2
seconds slow compared to nuclear test travel times. For this particular event, however, the J-B
Tables predict the arrival times to within 0.30 sec.
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The average residual of 0.14 sec for the Adirondacks was computed for stations within the
Pre-Cambrian outcrop boundary on Figure 11. The difference of the residuals between the
North Haverhill and Adirondack a.rays (0.47 seconds) is in good agreement with the results of
Taylor and Toksdz (1979) who measure a 0.5 second difference between the central Adirondacks
and the New Hampshire-Vermont border region. Crustal models derived from NY-NEX data
(Luetgert and Hughes, 1990) indicate a 0.23 second difference between the vertical travel time
through the crust of the Adirondacks compared to the Appalachians. Thus, approximately 0.2
seconds of the 0.4 to 0.5 second difference must be accounted for in the upper mantle, as
suggested by Taylor and Toksoz (1979).

The Adirondack station residuals listed in Table 4 suggest that the Marcy anorthosite and
the underlying Tawahus complex is a high velocity feature, as suggested by Owens (1987).
Figure 11 shows the surface outcrop of the anorthosite body and local selsmic stations. With
the exception of ECO and CTR, scations in or near the anorthosite have large negative residuals
indicating high velocities teneath the stations. Farther away, the residuals drop to lower (but
still negative ) values. Note that the GL statlons show an increase in residual going east:
station 1131 is about 0.08 seconds faster than 1125, Since P waves at delta of 83 degrees have
an incidence angle of 16 degrees, these observations suggest that one edge of the Tawahus
complex lies approximately 5 km east of station 1126,

Travel time data from the SHAGAN explosion can be used to estimate the teleseismic ray
parameter. Figure 14 shows the travel times to the Adirondack stations plotted versus
distance. The least-squares straight line is aiso shown. The slope of the line (5.33 sec/deg) is
an estimate of ray parameter that ignores second-order terms (Johnson, 1967). This estimate
compares to 5.09 sec/deg at 83.5 deg listed in the Herrin Tables for a discrepancy of 0.24
sec/deg. The second-order terms would contribute only 0.05 sec/deg to the discrepancy. A 2-4
degree regional dip to the Moho under the array would produce roughly a 0.2 sec/deg change in
the ray parameter measurement. Thus a moderate regional variation in crustal thickness
could account for this discrepancy. Clearly, additional data are required to confirm this
observation.
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5. MAGNITUDE ESTIMATION

Body-wave magnitude, m,, estimates for the Shagan River JVE were made from the North
Haverhill array vertical stack and for each vertical sensor separately (Richter, 1958), The initial
attempt at magnitude estimation resulted in estimates ranging irom m, = 6.21 to 6.31. After
reanalysis of the data it was determined that the apparent variation in signsd amplitude was
largely the result of high frequency noise riding on top of the teieseismic signal. A low-pass filter
with a comer at 5 Hz was applied to the data and the magnitudes were recalculated. After
filtering, the m, estimates for the array elements were found to have a slightly lower varjance,
with estimates ranging from m, = 6.19 to 6.26. Variance in the flitered magnitude estimates can
easily be explained from expected inaccuracies in system calibration. The mean, m, = 6.23, for

the array is slightly more than 0.1 magnitude unit of the USGS assigned value of 6.1.

The array magnitude is also higher than the New England network average value of
m, = 5.95 reported by Ebel, et al. (1989), but is well inside the range of the New England net-

work site estimates of m, = 5.59 to 6.51. It is interesting to note that while there is a consis-

tency in travel time residuals between the array and network stations BNH, HNH, and BVT, it
does not carry over to the magnitude estimates. In fact, stations HNH and BVT were among the
lowest magnitude estimates in the New England network at my = 5.59 while BNH had the
highest estimate at m, = 6.51.

Magnitudes for the Adirondack array were calculated from instrument-corrected
displacement seismograms and are listed in Table 4. The average m, is 5.87, below the North
Haverhill array value, the USGS determination, and the New England network average, yet
still well within the range of these estimates.

6. CONCLUSIONS

Observations of the Soviet SHAGAN nuclear test were made at a 16-element high-frequency
array in North Haverhill, New Hampshire, and on a five-station array in the central
Adirondack Mountains, New York. Travel times to the stations are in good agreement with
travel times predicted by the Jeffrey-Bullen Tables and are about 2 seconds late compared to
the Herrin Tables. Relative residuals indicate a 0.5 second difference between the pre-
Cambrian Adirondacks and the Paleoznic Appalachian orogenic zone, with the Adirondacks
being faster. About 0.23 second of the difference can be accounted for by faster crustal
velocities in the Adirondacks. The remainder must be due to velocity differences in the upper
mantle. Residuals at Adirondack stations reflect the presence of the high-velocity Tawahus
complex beneath the Marcy anorthosite of the Adirondack Highlands. Body wave magnitudes
range from 5.87 (the average for the Adirondack array) to 6.23 (the mean for the North
Haverhill array), well within the scatter of other observations in the northeastern United
States,
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